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A Multiscale Computational Model for Predicting Damage Evolution in
Viscoelastic Composites Subjected to Impact Loading

by

J. N. Reddy
Department of Mechanical Engineering,

Texas A&M University
College Station, Texas 77843-3123

Tel: (979) 690-7153
e-mail: jnreddy@tamu.edu

EXECUTIVE SUMMARY

The objective of the project was to develop a multiscale computational model capable of
predicting the evolution of matrix cracking, delamination, and fiber cracking in viscoelastic
composite structures subjected to ballistic impact.  The model is three dimensional and
computational in nature, utilizing the finite element method, and this model is being
implemented to the explicit code DYNA3D.   Crack growth is simulated via the cohesive zone
model currently under development by the author.  The cohesive zone model for predicting
damage evolution in laminated composite plates is cast within a three dimensional continuum
finite element algorithm capable of simulating the evolution of matrix, fiber, and delamination
cracking in composite structures subjected to ballistic impact.  Cracking on vastly differing
length scales is accounted for by employing global-local techniques, with appropriate damage
dependent homogenization techniques introduced to bridge the disparate scales.  Finally,
simplified generic example problems were solved analytically and compared to computational
results obtained with the model as a means of model verification. A damage constitutive model
for polymer-matrix composite materials was developed and implemented into a commercially
available finite element package.

TECHNICAL DISCUSSION

Preliminary Comments

While accurate models have been developed for predicting impact response of metals and
ceramics, which are normally crystalline in nature, models have not been developed for
polymeric materials, which have the potential to decrease both mass and cost of such strategic
defense weapons.  This is due to the different physical nature of fracture in polymeric media, as
well as the multiple length scales on which this fracture occurs.  The first of these is addressed
by a micromechanically based viscoelastic cohesive zone model developed by the principal
investigator and coworkers, and the second is solved via the multiscale damage dependent
algorithm described herein.  These two aspects of the research comprise a unique approach to
this problem.  The cohesive zone model is unlike any others in existence, in that it requires only
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well defined experiments at the microscale.  The multiscale algorithm utilizes damage dependent
homogenization principles for viscoelastic media that have been recently developed by the
author and coworkers, an aspect which has not been correctly incorporated by other researchers.

The research was performed in four coordinated steps:  1) solution of microscale problems; 2)
development of homogenization schemes for multiscale analyses; 3) construction of local and
global damage evolution algorithms; and 4) solution of model demonstration problems.  As a
part of the effort, a new simplified explicit finite element code is being developed by the
principal investigator.  This code is identical in general formulation to DYNA3D, but is designed
to simplify the code development process, and to streamline the implementation of the newly
developed multiscale subroutines directly into DYNA3D. All of these results are included in the
Ph.D. dissertation of Cha Searcy, a graduate student who has worked on the project with Dr.
David Allen, and they are not reported here.

The results of a damage constitutive model for polymer-matrix composite materials that was
developed and implemented into a commercially available finite element package are discussed
in this report.

INTRODUCTION

Continuous Damage Mechanics (CDM) is a more rational approach. PMCs experience damage
and unrecoverable deformations similar to plasticity. CDM can be applied to the constituents
(fiber, matrix, interphase) at the micro-scale [1-3]. In principle, these models should need a small
number of material parameters because each phase is isotropic [3]. However, the constituents
cannot be tested in isolation, so they must be tested as part of a lamina.  It is difficult to design
material tests at the mesoscale (lamina) level that reveal the material parameters in the
constituents.  One such micro scale level model is presented in [2].   The micro scale level model
in [3] includes a detailed identification of material parameters in terms of lamina level tests.
From a computational point of view, micro scale-level models are expensive, because they
require an excellent micro mechanics model in order to assemble the contributions of the
constituents into the lamina behavior.  Furthermore, accurate micro mechanics is needed to
decompose the meso scale level stress and strain among the constituents.  Ref. 3 uses the
periodic microstructure model (PMM) from [4], which is very accurate.

A simpler approach is to work directly at the mesoscale modeling the behavior of a
homogeneous, orthotropic lamina.  The material is assumed to be orthotropic and not
transversely isotropic because even isotropic materials become orthotropic after damage [5].
Therefore, use of scalar damage is not appropriate, although it has been done [6]. The simplest
yet realistic representation of damage is a second order diagonal tensor with principal directions
aligned with the material directions [7].  This works well for PMC because the fiber direction
dominates the response; all micro cracks are thus oriented in three perpendicular planes
coinciding with the material directions.  Any more generality yields models too complex to be
practical.
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A simple meso scale level model of damage and plasticity is presented in [8]. It works only for
plane stress without inter-laminar damage.  Its main drawback is its cumbersome identification.
In order to identify the material parameters, one has to test a [+/-67]S laminate, which is not
standard.  Furthermore, the model does not necessarily predict lamina failure in agreement with
any failure criteria such as Tsai-Wu.

In order to address these shortcomings, a new damage constitutive equation is presented in [7].
Then, Ref. [9] extended the damage model of [7] to laminates, performed identification of
several PMC materials from published data, and validated the model with additional data not
used in the identification process.  Later, Ref. [10] added plasticity to the model, identified new
materials and further validated the plasticity and the damage portions of the model with new
data.  The analysis is performed for a lamina in [7], and for laminates in [9-10] using CLT.
Then, Lonetti et al. [11] added inter-laminar effects.  A finite element formulation of the 3D
damage model of [11] is presented and implemented here as a user material model within
ANSYS in order to solve more complex laminated problems with general boundary conditions
and including the effect of geometrical non linearity.

FINITE ELEMENT FORMULATION

A displacement-based finite element formulation is used. The body of a laminate is represented
by a series of layers with different thickness and orientations.  Two reference systems, global (xi,
i=1..3) and material (ei, i=1..3) are used. The local reference axis e1 is aligned with the fibers
direction, e3 points through the thickness of the laminate, and e2 lays on the mid-surface of the
layer and is perpendicular to e1 and e3 (e2= e3 x e1).

Considering a body B, in which the internal stresses σ, the distributed load q, and the
concentrated loads f constitute an equilibrated system, applying an arbitrary virtual displacement
pattern δu* compatible with the internal strain δε*, the principle of virtual displacement can be
written as

* *

1

0
fn

TT T
i i

iV S

dV u qdS u fδε σ δ δ
=

− − =∑∫ ∫ , (1)

where nf is the number of the concentrated loads. Introducing the shape functions N and nodal
displacement d and using the finite element discretization process, Eq.(1) becomes

0T T T

V S

d B dV N qdS fδ σ
⎛ ⎞

− − =⎜ ⎟
⎝ ⎠
∫ ∫ , (2)

where S is the area in the x1-x2 plane, and V = [S x t], with t total thickness of the laminate. To
predict the stiffness reduction, an incremental step-by-step analysis is adopted. For a load
increment, Eq.(2) becomes

1

0
n

T T

iV S

B dV N qdS fσ
=

∆ − ∆ − ∆ =∑∫ ∫ (3)

where σ∆  represents the stress increment.  The damaged stiffness E at the current increment can
be determined directly from the constitutive equations (Eq. 42-43) as

                                                    D E
D

σ σσ ε ε
ε

∂ ∂
= + =

∂ ∂
&& &&                              ( 4)
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Substituting Eq. ( 4) into Eq.(3), we get

[ ] [ ]epdK u F⎡ ⎤ ∆ = ∆⎣ ⎦ %
      ( 5)

where the stiffness matrix and the load vector are

[ ]

T epd
epd

V

T

S

K B E B dV

F N qdS f

⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦

∆ = ∆ + ∆

∫

∫
( 6)

The incremental form of the governing equation can be written as

 [ ]M G
NL NLK K u F⎡ ⎤+ ∆ = ∆⎣ ⎦                                ( 7)

where ∆u is the incremental displacement, M
NLK is the non linear material tangent stiffness

matrix, G
NLK is non linear geometrical contribution, and ∆F is out balance force.

Damage is monitored at the Gauss integration points.  The following algorithm is used to
integrate numerically the rate equations.  First, compute the strain and stress increment ∆ε, ∆σ in
the local coordinate system for each lamina at each gauss point

                                         [ ] [ ] [ ] [ ];k kL G L G
T Tε ε σ σ∆ = ∆ ∆ = ∆                                                    ( 8)

where the kT is a coordinate matrix transformation [1].  Subscripts L, G, indicate local and global
coordinates, respectively.  An elastic predictor and inelastic corrector scheme is used to
determine the effect of a small strain increment ε∆ .  In this way the initial increment is purely
elastic.  Damage is evaluated in order to check if the inelastic effects grow. There are two
possible cases, elastic behavior ( 0dg < ) or damage evolution ( 0dg ≥ ). The evolution of
damage variables is subjected to the return-mapping algorithm.  In this way, the damage domain
is linearized to the first order as

( ) ( )1 1 1
1 1

k kd d
d d k k

i i i
i i

g gg g Y Y
Y

γ γ
γ

+ + +

+ +

∂ ∂
≅ + − + −

∂ ∂
             (9)

where the subscript (i+1) indicates load step, while superscript (k) represent the iteration number.
The thermodynamic forces (Y,γ) and  the effective stress σ , can be expressed by using the
constitutive and evolution equations in terms of the kinematic quantities (D,ε) and the damage
multiplier as
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∂ ∂
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∂ ∂

∂
− = − ∆

∂

− = −

⎡ ⎤∂
− = − + −⎢ ⎥

∂⎢ ⎥⎣ ⎦

− = ∆ ( )( 1) ( )
1 1

1

kd
d k k

i i
i

f
Y

ε ε+
+ +

+

∂
−

∂

( 10)

In the general case when damage grows, Eqs ( 10) leads to a linear system that can be solved for
the damage multiplier dλ∆ . The last step is to check if the damage state variables Di have
reached the critical values CR

iD . When a damage component exceeds the critical value, it signals
the appearance of a macro-crack.  Therefore, the damage component is set to nearly one (Di=1)
to enforce total reduction of stiffness at the Gauss point.

USER DEFINED MATERIAL MODEL

In order to incorporate material non-linearity, a user-defined subroutine is written in Fortran and
linked with ANSYS. In the process of linking, a customized ANSYS executable file is obtained
which is used for the analysis. The procedure for getting the executable file [12] is as follows: A
new directory is created in the drive where ANSYS is installed. The following files are then
copied to the new directory from the \custom\user sub directory in ANSYS: Anscust.bat,
Makefile, Ansysex.def. The Fortran files are then compiled and linked with ANSYS by running
the Anscust.bat file. The procedure will load object files and library files after the compilation
and a new executable ANSYS file will be created and will reside in the new directory.

Continuous damage mechanics coupled with thermodynamics is used in order to predict the
inelastic behavior of a material. In this case, a set of internal variables is used to describe the
damage behavior. The damage model used for modeling the user material is based on available
data [7,9-11]. The simplicity of the model lies in the fact that only a few parameters are required
to model non-linearity and they can be obtained from standard tests. The model predicts the non-
linear effects as a reduction of stiffness and increments of damage. It requires 20 user constants,
including five initial transversely isotropic properties, three state variables d1, d2 and d3, also
called damage variables, and 12 material parameters. The damage variables are: the damage in
fiber direction d1, the damage in transverse direction d2, and the damage in the direction
perpendicular to the fiber d3.

The 12 material parameters that are required for the damage model are as follows:
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a. Six internal parameters J11, J22, J33, H1, H2, H3 that are univocally defined in terms of
experimental material properties.
b. Three critical damage values in tension and compression along the fiber and transverse
directions: D1TCR, D1CCR, D2TCR.
c. Three damage threshold and damage evolution parameters: γ c1, and c2.

Internal Material Constants
The internal material constants (J11, J22, J33, H1, H2, H3) are computed a priori and do not change
during the course of the analysis. They are defined in term of the following experimental
properties.
a. Critical damage values in tension (D1TCR, D2TCR) and compression (D1CCR)
b. The stiffness values (E1, E2, G12, G23, ν12)
c. The strength values in tension (F1t, F2t), compression (F1c) and shear (F4, F5, F6)
d. Damaged shear modulus at failure ( *

12G , *
13G , *

23G )
The internal constants are defined by fourth and second order tensors J and H. They appear in
the formulation of the damage surface g

                                ( ) ( )1/21/2

ij ijhk hk ij ij 0g Y   J Y  + H   Y - γ(δ) - γ=  (11)

in thermodynamic force space Y

( )1 -
2

pqrs pq rs
ij

ij

E
Y

D
ε ε∂

=
∂

(12)

In stress space, Eq. (11) represents the Tsai-Wu surface at failure with
Y     = Thermodynamic force tensor dual to the damage tensor D
J, H  = Internal material constants

            γ (δ) = Damage evolution variable
            γ0     = Damage threshold representing the initial size of the damage surface
No damage occurs until the thermodynamic force Y reaches the damage surface. For undamaged
material γ = 0 and g has the shape of the Tsai-Wu surface.
At failure, γ*+ γ0 = 1 and the shape and size of g matches the Tsai-Wu surface, where γ*

represents the value of γ at failure. Comparing the g-surface with the Tsai-Wu surface at failure,
we arrive at a linear system of equations for determination of the J and H tensors as follows.

Calculation of J11, H1

When the composite lamina is subjected to uniaxial load in the longitudinal direction, all stress
components other than σ1 are zero. Therefore (Eq .11) reduces to

                                 ( )211 11
11 1 1 1 06 6

1 1

C C J σ  + H σ  - γ + γ
Ω Ω

g =                    (13)

with the integrity tensor given by
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I DΩ = −                                             (14)

where
 C = Compliance tensor of the undamaged material

             Ω   = Integrity tensor
  D   = Damage tensor
At failure, the damage variables reach the critical values (D1t, D1c). If   F1t represents the tensile
strength and F1c the compressive strength, (Eq. 13) becomes

                                        ( )2 *11 11
11 1t 1 1t 06 6

1t 1t

C CJ F  + H F  = γ  + γ  
Ω Ω

 (15)

                                       ( )2 *11 11
11 1c 1 1c 06 6

1c 1c

C C J F  + H F  = γ  + γ  
Ω Ω

 (16)

                                                1t 1t 1c 1cΩ = 1-D   and Ω = 1-D  (17)
The Tsai-Wu criterion for uniaxial loading in the fiber direction is given by
                                 2 2

1 1t 11 1t 1 1c 11 1cf F  + f F  = 1  and  f F  + f F  = 1 (18)
Hence the right hand side of (Eq.15) and (Eq.16) should equal 1 so that the damage surface
matches with the Tsai-Wu surface at failure. The critical damage values are obtained from
statistical methods [7]. Then the two equations are solved simultaneously and the values of J11
and H1 are obtained.

Calculation of J22, H2

When the composite lamina is subjected to transverse uniaxial loading, all the stress components
other than σ2 are zero. At failure,  (Eq .11) reduces to

                        ( )2 *22 22
22 2t 2 2t 06 6

2t 2t

C C J F  + H F  = γ  + γ  = 1
Ω Ω

           (19)

2t 2tΩ = 1-D                                       (20)
When the lamina is subjected to in-plane shear loading, all the stress components other than σ6
are zero. At failure, (Eq .11) becomes

                 ( )2 *66 6611 22 1 2
6 6 04 4 2 2 2 2 2 2

1s 2s 1s 2s 1s 2s 1s 2s

2C 2J J H H F  + + F  = γ  + γ  = 1
Ω Ω Ω Ω Ω Ω Ω Ω

C
+                 (21)

Since the shear response of the lamina does not depend on the sign of the shear stress, the
coefficient of the linear term in (Eq.21) should be zero. Therefore we get

                             
2 2
2s 2s

2 1 s12 1 s122 2
1s 1s

Ω ΩH - H -r  ;  r
Ω Ω

H= = =           (22)

       ( )2 * 2 211 12 6622
6 0 s12 1s 2s

s12 s12 12 s12

J 2CJ F  = γ  + γ  = 1  ;   k Ω Ω
k k k

s

s

r
r

+ =     (23)

Now s12k  can be approximated as the ratio of damaged shear modulus to the undamaged shear
modulus [7,9-11]
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*
12

s12
12

k G
G

=                 (24)

Also, it has been experimentally observed that most of the shear damage is in the form of
longitudinal cracks rather than the transverse cracks [7] and hence D2s>D1s or from (Eq.12) we
obtain the restriction

                                                                 120 1Sr< <                                                              (25)

Substituting Eq. (24) in Eq. (23) and solving Eq. (19, 22, 23) we obtain the values of J22 and H2.

Calculation of J33 and H3

In this case the inter-laminar stresses are taken into consideration. The formulation of equations
is similar as that of the in-plane case. When the lamina is subjected to inter-laminar stresses, at
failure, (Eq.11) reduces to

   ( )2 *33 55 3 5511 1
5 5 04 4 2 2 2 2 2 2

1s 3s 1s 3s 1s 3s 1s 2s

J 2C H 2J HF  + + F  = γ  + γ  = 1
Ω Ω Ω Ω Ω Ω Ω Ω

C
+        (26)

         ( )2 *33 322 44 2 44
4 4 04 4 2 2 2 2 2 2

3s 2s 3s 2s 3s 2s 3s 2s

J HJ 2C H 2F  + + F  = γ  + γ  = 1
Ω Ω Ω Ω Ω Ω Ω Ω

C
+                                 (27)

Since the shear response does not depend on the sign of the shear stress, the coefficients of the
linear term must be zero. Therefore we get,

                      
2 2
3s 3s

3 1 s13 1 s132 2
1s 1s

Ω ΩH - H -r  ;  r
Ω Ω

H= = =                              (28)

                       
2 2
2s 2s

2 3 s23 3 s232 2
3s 3s

Ω ΩH - H -r  ;  r
Ω Ω

H= = =                            (29)

Also, it has been experimentally observed that s13r  should be less than 1 [11]. Similar to s12k  in
(Eq. 24) we have s13k  and s23k  given by

                                    
*

2 2 13
s13 1s 3s

13

k Ω Ω G
G

= =                             (30)

                                   
*

2 2 23
s23 2s 3s

23

k Ω Ω G
G

= =                            (31)

Therefore (Eq. 26) and (Eq. 27) reduce to

                   ( )2 *11 13 33 55
5 0

s13 s13 13 s13

J J 2C F  = γ  + γ  = 1 
k k k

s

s

r
r

+                    (32)

                   ( )2 *22 23 33 44
4 0

s23 s23 23 s23

J J 2C F  = γ  + γ  = 1 
k k k

s

s

r
r

+                    (33)

Solving (Eq. 32) and (Eq. 33) we obtain the values of J33, H3. The next step is to determine the
evolution or hardening parameters c1, c2 and damage threshold γ0.



10

Flow and Hardening Rules
A non-associated flow rule is used for the damage model [7,9-11]. The flow potential surface is
given by the following equation

                                  ( )1/2

ij ijhk hk 0Y   J Y - γ(δ) - γf =                                                               (34)

The damage and flow surface expand as a function of evolution variable γ according to the
evolution law

                               1
2

δγ = = c exp 1
c

π
δ

⎛ ⎞⎛ ⎞∂
− −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

                                                                   (35)

where π(δ) is the dissipation energy and c1, c2 are material constants, which have to be
determined from experimental data. Since the dissipation energy should be convex [7], its second
derivative should be positive

                                   1

2 2

c''  exp 0
c c

δπ
⎛ ⎞

= − >⎜ ⎟
⎝ ⎠

                                                                      (36)

In that case the signs of c1, c2 should be different. The flow rule for damage and hardening is
given by

                              f fdD = dλ     ;     d  = dλ
Y

δ
γ

∂ ∂
∂ ∂

                                                                (37)

where dλ is the damage multiplier whose value can be determined from the consistency
condition (g = 0, dg = 0)

                         

g Y
Y εdλ =  dε

g Y f g γ f+
Y D D γ δ γ

∂ ∂
∂ ∂−

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

                                                            (38)

Substituting in (Eq. 37) we obtain

                  

g Y
fY εdD =  dε
Yg Y f g γ f+

Y D D γ δ γ

∂ ∂
∂∂ ∂−
∂⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

                                                            (39)

The incremental stress- strain relations for damage evolution is given by
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                                       d d dD
D

σ σσ ε
ε

∂ ∂
= +

∂ ∂
                                                                    (40)

where ε is the total strain. Substituting dD from (Eq. 39) into (Eq. 40) we get,

 

g Y
fY ε d  
Yg Y f g γ f+

Y D D γ δ γ

mnld E d
D

σ σσ ε ε
ε

⎛ ⎞∂ ∂⎜ ⎟∂ ∂ ∂∂ ∂⎜ ⎟= − =
⎜ ⎟∂ ∂ ∂⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠

                                        (41)

where 

                       

g Y
fY ε
Yg Y f g γ f+

Y D D γ δ γ

mnlE
D

σ σ
ε

∂ ∂
∂ ∂ ∂∂ ∂= −
∂ ∂ ∂⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

                                             (42)

Here Emnl represents the tangent stiffness due to the material non-linearity. When geometrical
non-linearity is considered (Eq. 41) is written as

                                      ( )mnl gnld E E dσ ε= +                                                                   (43)

Hardening Parameters and Damage Threshold

The hardening parameters (c1, c2) control the damage evolution and the damage threshold (γ0)
represent the initial size of the damage surface. Since the material behavior is highly non-linear
for a composite lamina in the in-plane shear mode, the damage is assumed to be notable in this
case [7]. Therefore, c1, c2 and γ0 are adjusted to predict the shear response of the lamina
subjected to pure shear conditions using Finite Element Analysis.

A single lamina is modeled in ANSYS and subjected to pure shear. The material properties and
parameters are input in the ANSYS material model definition. The rear nodes are clamped, and
the nodes in the side faces are free to move only in the y-direction. The nodes in the front face of
the lamina are given a uniform displacement v in the y-direction to simulate the pure shear
condition.

The non-linear analysis is run with the user material model, which includes c1, c2 and γ0. During
the post processing stage, the sum of the reaction forces Fxy and the displacement v in the front
face of the lamina are recorded for each sub step. The average shear stress is calculated by
dividing Fxy by the shear area and the shear strain is calculated from the displacement of nodes in
the front face of the lamina. The shear stress-strain from the analysis is plotted and compared to
the experimental shear response (Fig. 1). If the curves don’t match, then the c1, c2 and γ0 values
are adjusted and the procedure is repeated until the shear stress-strain matches the experimental
shear response.
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GEOMETRIC AND FINITE ELEMENT MODELING

Finite element models of the [0/90]s and [90/0]s lay-up beams with different aspect ratios (length
to height ratio) are developed. Four point bending tests are used in-order to study the effect of
aspect ratios on the damage of the beams. Both material and geometric non-linearity are
considered for the analysis [14]. Contributions due to in-plane and total damage (both in-plane
and inter-laminar damage) are analyzed for each aspect ratio of the beam.

Laminated, rectangular beams with different aspect ratios are modeled in ANSYS using solid
elements. Modeling with shell elements is not possible within ANSYS because the code does not
supply inter laminar stresses to the user subroutine. Other codes such as ABAQUS and LUSAS
were investigated and the same limitation was found.  Due to symmetry, only a quarter of the
beam is modeled. A rectangular prism is modeled based on the aspect ratio of a beam and then
partitioned into 4 layers representing the lay-up configuration with different orientations. Three
aspect ratios are considered (a/h =4, 10, and 20). Then, the models are meshed using 3-D 20-
noded structural solid elements. The material properties vary with the orientation of the fibers in
each layer. Therefore the material orientation option is used in-order to orient the elements, in
each layer, according to the lay-up angle. Orthotropic material properties based on available data
[7,9-11] are assigned to each layer. Glass/Epoxy and Carbon/Epoxy materials are considered for
the analysis. The material properties are shown in Table 1.

Since, only a quarter of the beam is considered, symmetric boundary conditions are given to the
nodes at the mid span on the plane YZ and also on the plane of bending XZ (see Fig. 8.3 in [1]).
The nodes in the mid-plane at the end of the beam are constrained in the z-direction to simulate
the end support. The nodes at a distance of 1/3rd of the length of the beam from the ends, which
also belong to the mid surface are given a specified displacement z-direction to simulate the
loading. These boundary conditions simulate a four point bending test. The material parameters
used for the analysis are shown in Table 2. Each material is analyzed in the [0/90]s and [90/0]s
lay-ups. The material properties and parameters (with adjusted c1, c2 and γ0) are input in the
ANSYS material model definition. The analysis is performed considering (a) In-plane damage
only, and (b) Total damage (in-plane and inter-laminar damage).

In-plane Damage Only
In this case, the material parameters J33 and H3 are set to zero so that the inter-laminar damage is
turned off. The non-linear analysis is performed on the beam with the optimum number of sub
steps. The damage is monitored at the integration points of the elements. When the damage state
variables id reach the critical values cr

iD , the damage component is set to 1 in order to enforce
total stiffness reduction at the Gauss point. During post processing, the sum of reaction forces Rz
at the restrained nodes and the deflection w of the end nodes located in the mid-plane are noted.
Then the bending stress S is calculated in terms of the reaction Rz output from the analysis as

                                              2

2 zMc aRS
I bh

= =                                                                          (44)

where a, b, h are the length, width and height of the beam and Rz is the reaction force measured.
Then the bending stress is normalized with respect to the transverse tensile strength of the
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material F2t. Similarly, the deflection w is normalized with respect to the length of the beam a. A
graph is plotted between S/F2t and w/a of the beam. This procedure is repeated for all types of
beams (lay-ups and materials). In case the deflection of the beam becomes large (more than 30%
of the beam length), geometric non-linearity is considered in addition to the material non-
linearity.

Total Damage
In this case, the inter-laminar damage is turned on when actual values of J33 and H3 are input.
The rest of the procedure is the same as the previous case. The evolution of the damage variables
d2, d3 (state variables) is studied. The maximum value of the damage variables is noted at the
integration points for each sub-step and a graph is plotted between d2, d3 and w/a. The graph
gives an indication of the damage growth in the beam.

RESULTS AND DISCUSSION

The damage threshold γ0 and hardening parameters c1, c2, are adjusted to obtain a good
correlation between the model predictions and experimental shear stress-strain data, as illustrated
in Fig. 1. The results obtained for the Glass/Epoxy composite beam with different aspect ratios
(a/h = 4, 10, 20) and lay-up angles ([0/90]s and [90/0]s) are shown in Figs. 2-10. With reference
to Fig. 2, the straight line indicates that there is no damage considered for the analysis. This
condition is achieved by assigning a large value for the damage threshold (γ0=1E20), which
means that the initial damage surface is very large and hence no damage occurs. The curve
below the linear case is the one obtained by considering the in-plane damage only. The main
mode of damage is due to d2, as shown in Fig. 4. When d2 reaches the maximum value, the
solution does not converge and the program stops. This indicates the emergence of a macro
crack. The maximum damage value d2 is 0.59, which exceeds the actual critical damage value
D2

cr (Table 2). This is because the damage value 0.59 occurs only in a small region, as it also
happens for d3 (see Fig. 3.) When D2

cr is considered as the limiting damage value, the analysis
stops when d2 reaches D2

cr, as shown in Fig. 2.

The last curve indicates the results for which the total damage is considered (in-plane and the
inter-laminar damage). In this case d3 dominates the damage behavior. This is because the
Glass/Epoxy is weak in the inter-laminar direction.  This is further shown in Fig. 4 where it can
be seen that d3 is much higher than d2. The values plotted are the maximum values of the damage
variables obtained from the integration points in each sub-step.When D3

cr is considered as the
limiting damage value, the analysis stops when d3 equals D3

cr, as indicated in Fig. 2. The
maximum damage value (d3) is 0.535, which exceeds the actual critical damage value D3

cr (Table
2). The reason being is that d3 equals 0.535 at a small region, as shown in Fig. 3.

It is worth noting that for the [0/90]s laminate, the maximum damage in both in-plane (d2) and
total damage (d3) condition occur in the 90˚ laminate. This is because the 0˚ laminate is subjected
to tension at the bottom and compression at the top, where damage is very small because the
fibers are strong in the 0˚ direction. At a/h=4 (Fig. 2-4), inter-laminar shear is high and it causes
significant out of plane damage d3. If the model does not consider it (d3=0), the in-plane damage
is underestimated (Fig. 4). When the aspect ratio is 20, the damage d2 becomes significant in the
total damage condition, as shown in Fig. 5-6. The maximum values of d2 (0.38) and d3 (0.46)
become closer, which means that d2 begins to dominate the damage in the beam for higher aspect
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ratios. This is because inter-laminar shear is less pronounced at high aspect ratios. The effect of
damage on deflections (Fig. 5) for a/h=20 is small because the outer layers dominate the stiffness
of the beam. Still, the inter-laminar shear strength F4 of Glass/Epoxy is weak, resulting in
significant inter-laminar damage d3 (Fig. 6).

Similar results can be observed in the [90/0]s lay-up beams (Fig. 7-10). As a/h increases, the
mode of failure changes from d3 to d2 (Table 3). In the case of the [90/0]S laminates, even for the
aspect ratio of 10, d2 starts to dominate the damage in the total damage condition. This is due to
the fact that the 90˚ laminate is subjected to a high stress at top and bottom of the beam in the
transverse direction where the material is weak. This is the reason why the maximum value of d2
occurs in the 90˚ laminate and the maximum value of d3 occurs in the 0˚ laminate. When the
aspect ratio is 20, very high deflections in the beam are observed. Hence, geometrical non-linear
effects must be considered (Fig. 9). The mode of failure switches to transverse damage d2 at
a/h=20 (Table 3 and Fig. 10).

The inter-laminar damage d3 dominates the damage in all cases for Carbon/Epoxy composite
beam with different aspect ratios (a/h = 4, 10, 20) and lay-up angles ([0/90]s and [90/0]s). In case
of the [0/90]s lay-up beams (Fig. 11-12), d2 is significant if d3 is not modeled (labeled as d3=0 in
the figures), whereas when inter-laminar effects are considered, d3 controls the damage in the
beam. This is due to the fact that the material is strong in the transverse direction and withstands
damage due to d3 even when the aspect ratio increases and the in-plane damage is insignificant.

For Carbon/Epoxy [0/90]S, the dominant mode of failure remains d3 even at a/h=20 (10-11). The
effect of damage on deflections is negligible because the fibers on the outer layers dominate the
bending stiffness. In case of the [90/0]s lay-up beams, similar results as the previous case is
obtained except that geometric non linear effects are also considered here due to the large
deflection  of the beam. Even switching LSS to [90/0]S the mode of failure remains inter-laminar
damage d3 for Carbon/Epoxy with 4<a/h<20 (Table 4). Significant transverse damage d2 is
accumulated but it is not the critical factor. Neglecting d3 leads to gross overestimation of the
failure load.

CONCLUSIONS

A finite element formulation of continuum damage model that includes inter laminar effects is
successfully developed and implemented as a user subroutine in a commercial finite element
analysis code. The internal damage parameters are identified from available experimental data.
Furthermore, the damage threshold and evolution parameters are identifies from available,
experimental shear stress strain data. The finite element formulation and identifies material
parameters are then used to investigate the influence of material properties, aspect ratio, laminate
stacking sequence, and geometric non linearity on the damage evolution, deflections, and failure
of laminated beams under four point loading. Furthermore, the option of neglecting inter laminar
damage is shown to lead to misleading predictions of in plane damage evolution and poor
predictions of failure load. In case of Glass/Epoxy composite, inter-laminar damage is significant
for all [0/90]s and [90/0]s beams with low aspect ratios. As the aspect ratio increases, the in-plane
damage becomes dominant. In the case of Carbon/Epoxy composite, the inter-laminar damage is
dominant for all aspect ratios of the beam.
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Weapons technology is shifting increasingly towards minimizing mass of defensive weapons as a
primary design constraint.  This is readily apparent in both tank armor and single soldier armor,
not to mention numerous other defense applications.  As a part of this new design philosophy, it
is clear that significant decreases in armor weight can be achieved by utilizing multi-layered and
multi-material structures to defeat offensively fired weapons.
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 Table 1. Material properties of Glass/Epoxy and Carbon/Epoxy

Property Glass/Epoxy
(Vf = 52%)

Carbon/Epoxy
(Vf = 62%)

E1 (MPa) 36200 131300
E2 (MPa) 8100 10800
G12 (MPa) 3200 5200
G13 (MPa) 1500 7100
ν12 0.23 0.29
F1t (MPa) 932 2100
F1c (MPa) 370 1080
F2t (MPa) 42 80
F4 (MPa) 35 72
F5 (MPa) 50 70
F6 (MPa) 50 70
G12 damaged (GPa) 2700 2258
G13 damaged (GPa) 1299 3083
G23 damaged (GPa) 1299 3083

Table 2. Material Parameters for the damage model

Property Glass/Epoxy Carbon/Epoxy
J11 0.531e-2 0.1897e-2
J22 0.226 0.287e-1
J33 0.2009 0.534e-1
H1 0.681e-1 0.2571e-1
H2 -0.1445e-1 -0.807e-2
H3 0.592e-1 0.8018e-2
ks12 0.866 0.434
ks13 0.866 0.434
ks23 0.866 0.434
rs12 0.212 0.314
rs13 0.8703 0.311
rs23 4.105 0.992
c1 0.22 0.045
c2 -0.3 -0.625
γ0 0.015 0.07
D1

cr 0.1161 0.1161
D2

cr 0.5 0.5
D3

cr 0.5 0.5
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 Table 3. Failure stress S/F2t and mode of failure for Glass/Epoxy

S/F2tLaminate
stacking
sequence

a/h d3=0 d3≠0 Mode At Failure

4 1.57 1.22 d3 d2=0.243
10 4.78 3.61 d3 d2=0.252[0/90]s
20 10.00 7.76 d3 d2=0.375
4 4.12 1.01 d3 d2=0.204
10 5.04 2.91 d3 d2=0.493[90/0]s
20 3.45 1.79 d2 d3=0.283

Table 4. Failure stress S/F2t and mode of failure for Carbon Epoxy

S/F2tLaminate
stacking
sequence

a/h d3=0 d3≠0 Mode At Failure

4 1.61 0.69 d3 d2=0.0058
10 5.30 2.12 d3 d2=0.0061[0/90]s
20 11.42 5.68 d3 d2=0.0069
4 5.63 0.50 d3 d2=2.4E-6
10 5.53 1.67 d3 d2=0.2271[90/0]s
20 3.20 2.00 d3 d2=0.3694
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Fig. 3 Damage evolution d3 for total damage analysis of [0/90]S Glass/Epoxy, a/h=4, at 
w/a= 0.00913 and normalized stress S/F2T=1.219    
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